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Abstract
Density functional theory and a pseudopotential plane wave method are applied
to study electronic and structural properties of the defect-free TiO2(110)

surface. The variations of the surface energy, work function, and atomic
displacements are examined for partially and fully relaxed slabs modelling
the rutile (110) surface, and consisting of up to 33 atomic layers. Relatively
small relaxations of atomic positions in the outermost layers have a strong
influence on the calculated surface energies and work functions. The effect
of nonequivalence of the odd–even layer terminations is explored. A simple
method is proposed which allows one to estimate accurate surface energies for
relaxed systems from calculations for partially relaxed slabs.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Titanium dioxide surfaces have attracted considerable interest in recent years due to their
fundamental properties and wide area of technological application [1, 2]. The stoichiometric
O-bridge termination of TiO2(110), which arises when cutting the bulk crystal, is characterized
by the lowest energy, and is the most stable among the rutile low index surfaces [1, 3]. In the
past decade there have been several density functional theory (DFT) investigations of both the
surface energy and the geometrical structure of clean TiO2(110) [3–11]. Earlier studies pointed
out the important factors influencing the results. The plane wave pseudopotential calculations
of Ramamoorthy et al [3] determined the relaxed equilibrium structures and surface energies
of the low index atomic planes, and demonstrated the importance of surface relaxation. The
oscillatory variation of surface energies with the number of layers in a slab has also been
noticed. The atomic displacements were found to be substantial and responsible for a large
reduction of surface energy for the (110) plane. Further calculations [4, 5] showed that the
generalized gradient approximate (GGA) functional reduces surface energy by as much as 30%,
compared to the local density approximation (LDA). It was also pointed out [6] that slabs of
at least six layers are necessary to achieve convergence of the surface energy and the correct
positions of surface atoms. The oscillating character of the TiO2(110) odd–even layer slab
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properties as a function of the slab thickness has been recently discussed [10] and ascribed to
surface-induced hybridization of Ti 3d and O 2p orbitals among the layers.

This oscillatory convergence with slab thickness, and the sensitivity to the exchange–
correlation functional applied, are responsible for quite a scattered range in the calculated (from
first principles) surface energies of TiO2(110) reported in the literature, which may differ even
by 100%, depending on the relaxation effect, and the slab thickness. Quite surprisingly, despite
its importance in experimental characterization of the state of an oxide surface [2], the variation
of the work function versus the number of layers in the slab has not been examined so far.
Besides this, only one group of the existing first principles calculations [12–14] addressed the
absolute value of the work function of TiO2, which again may deviate from the experimental
estimates even by 2 eV.

These large uncertainties in the surface quantities of TiO2(110) determined which are of
major importance for various applications [1] of rutile TiO2 single crystals warrant further
theoretical investigations of the structure and energetics of the (110) surface. Reliable values
of the clean surface characteristics are also necessary in order to build a solid basis for studies
of adsorption systems. In this work we examine different modes of a slab relaxation and their
influence on the surface energy, work function, and atomic displacement pattern, for a range of
slab thicknesses wider than those studied previously. Such systematic study of work function
variation for this system has not been presented before. We discuss the effect of nonequivalence
of the odd and even layer slab terminations, and show that quite accurate estimates of surface
properties can be obtained from a proposed extrapolation of results for thin slabs.

2. Methodology and details of the calculation

The DFT calculations were performed within the plane wave basis pseudopotential approach,
as implemented in the Vienna ab initio simulation package (VASP) [15, 16]. The
exchange–correlation energy is treated within the Perdew and Wang (PW91) version of the
GGA [17]. The interaction of valence electrons with ionic cores was described using ultrasoft
pseudopotentials [18, 19]. In some additional, comparative calculations we have applied the
projector augmented wave (PAW) potentials [20] to represent the electron–ion interaction
within the Perdew–Burke–Ernzerhof (PBE) version of the GGA [21]. In the Ti pseudopotential
applied the 3d and 4s states were treated as valence states. The cut-off energy for the plane
waves was set equal to 400 eV, throughout all computations.

The tetragonal unit cell of the rutile TiO2 contains two Ti and four O atoms, and is
characterized by the lattice parameters a and c, and the internal parameter u, describing a shift
of the O2− anions about the Ti4+ cation [22]. In the calculations of bulk properties a 4 × 4 × 4
mesh of Monkhorst–Pack special k-points was applied [23]. The dimensions of the unit cell
determined: a = 4.639 Å (4.594 Å), c = 2.976 Å (2.959 Å), and u = 0.3048 (0.306), agree
well with the experimental data [22] given in parentheses.

The TiO2(110) surface is modelled by periodic slabs (figure 1) consisting of several (3–11)
repeat units built of the O–Ti2O2–O trilayers, separated by a vacuum layer of �12.7 Å
(10 Å with PAW potentials applied). Note that each repeat unit is charge neutral and has a
zero dipole moment in the direction normal to the surface. A 2 × 4 × 1 mesh of k-points was
used to sample the Brillouin zone of the 1 × 1 surface unit cell of dimensions a

√
2 and c, in

the [110] and [001] directions, respectively. Gaussian smearing of 0.05 eV was applied to the
Brillouin-zone integrations. During a structure optimization, the atoms were allowed to relax,
either on one side of the slab or symmetrically on both sides, until the forces on unconstrained
atoms were less than 0.02 eV Å

−1
. The electric field arising for asymmetric slab relaxations

was compensated by a dipole correction [24].
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Figure 1. (a) Side view of a three-trilayer slab representing the TiO2(110) surface. The dashed
lines enclose a charge-neutral trilayer. (b) Top view showing the atoms of the two uppermost layers
and a 1 × 1 surface cell (dashed line).

In the calculations of surface energy for slabs, a standard method is to evaluate the slab
formation energy by subtracting from the total energy of the slab the bulk energy per layer, that
is obtained from a separate calculation. For an increased number of layers in the slab, the slab
formation energy approaches surface energy σ (per unit cell). The latter is determined from the
relationship

σ = 1
2 (E slab

n − nEbulk). (1)

Here E slab
n is the total energy of an n-layer slab and Ebulk is the bulk energy per layer of an

infinite solid. The factor of one half takes into account the two surfaces of the slab. The surface
energy calculated from (1) is very sensitive to the accuracy in determination of the bulk energy
term [25, 26]. A small error in that term can make the calculated surface energies diverge
linearly with increasing slab thickness. To avoid the divergence problem we have employed a
method [27, 28] that makes use of equation (1) rewritten in the form

E slab
n = 2σ + nEbulk, (2)

which implies that the bulk energy can be extracted from the slope of a linear fit of the slab’s
total energy plotted versus n. This value is subsequently used in equation (1).

3. Results

3.1. Surface energy

The convergence of the surface energy of the unrelaxed slabs was checked for slabs built of
three to eleven TiO2 layers (L). Using −53.6652 eV for Ebulk, as determined from a linear
fit (2) to the slab energies (by dropping the energy of a thinnest 3L slab), yields very well
converged σ s (figure 2). Thus, the above value of Ebulk was adopted in all further calculations
of σ .

The surface energy of unrelaxed slabs calculated with GGA-PW91 (figure 2(a)) converges
to 1.48 J m−2, varying in the range 1.477–1.482 J m−2 (which gives the numerical uncertainty
of ±0.3%). This is substantially less (13–17%) than the energy reported from previous plane
wave pseudopotential calculations (1.71 J m−2 [3], and 1.78 J m−2 [8]) for a 6L slab. This
difference can be ascribed to different exchange–correlation functionals applied in this (GGA-
PW91) and previous (LDA) works. This conjecture is supported by our calculations employing
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Figure 2. Surface energy versus the number of layers in the slab calculated for unrelaxed (a) and
fully relaxed slabs (b). The horizontal lines mark the converged surface energy. Open symbols,
GGA-PW91; filled symbols, GGA-PBE.

PAW potentials and GGA-PBE, which again yield σ reduced by 12%, and equal to 1.30 J m−2

(figure 2(a)). It is also supported by the results of Lazzeri et al [8] who reported a much
reduced σ (1.38 J m−2) calculated for a 6L slab within GGA-PBE (see also [4]), and those of
Lindan et al (1.43 J m−2, GGA-PW91, 3L slab [7]). Additionally, different pseudopotentials
applied by those authors could also contribute to some part of the differences in σ , though, as
demonstrated [31], the inclusion of the Ti semicore 3s and 3p states in the valence, does not
change the total energies significantly. Therefore, any change in a quantity like the surface
energy, which is determined by the total energy differences, is expected to be even smaller.

The surface energy of TiO2(110) is very sensitive to the lattice relaxation. As one
can see (figure 2), for the relaxed slabs the surface energy converges to 0.57–0.58 J m−2,
which means that it is greatly reduced (by 60%) compared to that for the unrelaxed case.
These numbers are in line with the recent results obtained with the same code (GGA-PW91:
0.56 J m−2 [11]). Earlier calculations [3–9] gave substantially larger values of σ , falling in
the ranges 1.10 J m−2 and 0.83 J m−2 (LDA, 3L and 6L slabs, respectively [3]), 0.84 J m−2

(LDA, 6L [8]), 0.73 J m−2 (GGA-PW91, 7L [6]), 0.80 J m−2 (GGA-PW91, 6L [9]), 0.81 J m−2

(GGA-PW91, 3L [7]); 1.14 J m−2, and 0.82–0.84 J m−2 (3L, LDA, and GGA, respectively [4]),
0.84 J m−2 (GGA, 3L [5]), with the exception of a considerably lower value of 0.31 J m−2,
reported for a 6L slab calculation within GGA-PBE [8]. The empirical estimate of the surface
energy is 0.28–0.38 J m−2 [29]. In most cases cited above the overestimation of the surface
energy originates either from too thin slabs applied (compare figure 2(b)) or is due to a
less adequate exchange–correlation energy functional applied. Our asymptotic surface energy
(0.58 J m−2), obtained from the well converged GGA-PW91 calculations, still almost doubles
the experimental value. Comparative calculations performed by us, applying GGA-PBE for the
exchange–correlation functional and PAW potentials [20], give surface energy values reduced
by 0.1 J m−2, and the asymptotic surface energy of 0.47 J m−2 (figure 2(b)). This, again,
underlines a sensitivity of this system to the exchange–correlation functional applied, and
shows that at least one half of the difference between calculated and measured surface energies
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Figure 3. The directions of atomic displacements (calculated with respect to the average z-position
of Ti atoms in a given layer) in upper layers of the seven-layer slab modelling the TiO2(110). An
arrow is shown if the displacement is �0.01 Å. Small balls represent Ti and the large ones O atoms.

might be due to exchange–correlation effects. A verification of the experimental findings as
regards the role of defects would be also desirable.

The results of figure 2(b) display the effect of nonequivalence of the relaxed odd and even
layer slabs [3]. The surface energy exhibits damped oscillations versus number of layers, being
larger for odd than for even layer slabs. Responsible for this are the displacements of titanium
atoms together with the in-plane oxygens from the surface layers of a slab (figure 3) and the
presence/absence of the mirror symmetry plane in the odd/even films. In the odd layer slabs
the shifts of Ti atoms in the top and the bottom layers oppose each other. The atoms in the
central layer remain almost in their bulk positions (only the in-plane O atoms move laterally by
±0.01 Å). For even layer slabs the fivefold and sixfold coordinated Ti atoms (figure 3) from
the top layer lie above the sixfold and fivefold titaniums from the bottom layer, respectively, so
the displacements of atoms from the top and bottom layers do not balance each other. For an
increased slab thickness, interactions between the atoms in the top and bottom layers become
weaker which leads to a weaker buckling, and the oscillation in surface energy is reduced. As
demonstrated in [10] this oscillatory convergence is connected with the change in the Ti 3d–O
2p interlayer hybridization along the direction normal to the surface.

Figure 2 shows that in order to get well converged surface energies, slabs of ten (or more)
fully relaxed layers should be applied. Let us note that our data for surface energy follow the
so-called 25% rule [11], which allows one to estimate the asymptotic surface energy from the
average of the σ for the three- and four-layer slabs. Although this rule provides a reasonable
guide to an asymptotic energetics of the clean TiO2(110) surface its wider applicability should
be treated with caution [30].

In order to examine in more detail the influence of relaxation on surface properties of the
rutile (110) we performed a series of calculations for slabs consisting of differently relaxed
layers. In the first case considered, only the layers on one side of the slab were relaxed (a
dipole correction was used), while in the other, slabs were relaxed on both sides. In each
case, the number of relaxed layers on the relaxed sides was increased by one. The results
presented in figure 4 demonstrate that for the same number of relaxed layers, the two-sided
relaxation significantly reduces (by 0.27–0.38 J m−2) the surface energy, compared to that
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Figure 4. Calculated surface energy and work function versus the number of layers relaxed either
on one side (diamonds) or on the two sides (triangles) of the seven-layer thick slab.

for the one-sided relaxed slab. The energy of the one-sided relaxed slabs changes very little
(�0.06 J m−2) if the number of relaxed layers is increased from two to six. The major part
of the difference between the surface energies of the partially and completely relaxed slabs is
compensated only by relaxing the positions of the atoms of the bottom layer (figure 4). It is
clear that the largest effects on the surface energy are from the relaxations of the outermost
layers on each side of the slab. Interestingly, for the one-sided relaxed slab, the surface energy
plot (figure 4, diamonds) is inversely symmetric with respect to the slab centre. The same is
observed also for thicker slabs of eight and eleven layers (and same relaxation mode). Thus,
accurate determination of surface energy of the TiO2(110) requires the slab to be fully relaxed.
Consequently, calculations for the adsorption systems based on the results for partially (one-
sided) relaxed slabs [32] may lead to an unrealistic energetics.

The surface energy formula (1) does not discriminate between relaxed and unrelaxed
slabs, or between different modes of relaxation. The two-sided relaxation gives more reliable
results, and already for four relaxed layers (two on each side), the surface energy differs by
only �0.04 J m−2 (7%) from that for an entirely relaxed slab (figure 4). In order to get the
correct surface energies from the calculations for one-sided relaxed slabs, the relaxation energy
has to be added to the σ for an unrelaxed surface. The latter is the total energy difference,
�E rlx = E rlx − E0, of a slab with only a few outermost layers relaxed (E rlx) and an unrelaxed
slab (E0). The energy difference is negative, and consequently, for a fully relaxed surface, σ

can be calculated from the following formula:

σ = σ 0 + �σ rlx, (3)

where σ 0 is the converged surface energy for an unrelaxed slab, and �σ rlx = �E rlx/A
(A being the area of surface unit cell). Using our results for a 7L slab (figure 4) one gets
�σ rlx = −0.884 J m−2 (when four layers are relaxed on one side). This gives the estimated
surface energy equal to �0.60 J m−2, which agrees within 3.5% with the asymptotic result for a
totally relaxed, the 11L slab (figure 2). A similar relation holds for the 8L and 11L slabs (again
subtracting �σ rlx for the four relaxed layers). It means that equation (3) provides a simple
way to estimate the surface energy of fully relaxed slabs from less computationally demanding
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Figure 5. Work function variation with the thickness of unrelaxed (circles) and fully relaxed
(squares) slabs. Open symbols, GGA-PW91; filled symbols, GGA-PBE.

results for the partially relaxed slabs. Such an estimation requires two calculations: one for an
unrelaxed slab, yielding a converged value of σ 0, and another one with only four outer layers
relaxed on one side.

3.2. Work function

The work function is a very sensitive measure of the state of the oxide surface [2]. It can
be defined as the difference between the electrostatic potential in a vacuum region and the
Fermi energy of the slab. The calculated work functions for both frozen and relaxed slabs are
presented in figure 5.

As can be seen, for the frozen slabs the work function converges to about 7.0 eV. For the
entirely relaxed slabs a substantial (0.5–0.6 eV) increase of the work function is observed, to
give 7.58 eV for the thickest slabs. The enhancement of the work function is due to the in-plane
alignment of the negative O ions (see figure 3 and section 3.3), and a substantial increase in
the dipole moment of the relaxed outer trilayer. Note that this increase is halved for the GGA-
PBE, which again demonstrates a sensitivity of the relaxed system to the exchange–correlation
effects. Interestingly, the difference between work function for the one- and two-sided relaxed
slabs (figure 4) remains the same as that between the relaxed and unrelaxed slabs. However,
relaxation of only one layer on each side sets the work function equal to the value corresponding
to a completely relaxed slab. In contrast, the one-sided relaxation does not alter the work
function until the last (second outer) layer is relaxed. Figure 4 illustrates this effect for a 7L
slab, but a similar result is also observed for the thicker ones—both even and odd layer slabs.
Thus, in order to determine the work function for the relaxed surface it is sufficient to relax
only the outermost layers on two sides of the slab.

First principles calculations of the work function of TiO2(110) are rather rare. The full
potential linearized augmented plane wave (FLAPW) calculations performed by Vogtenhuber
et al for the relaxed 3L slabs (within the LDA) yielded 6.79 eV [12], 7.09 eV [13], and
7.16 eV [14]. The latter two numbers agree, within 0.30 eV, with the GGA-PW91 results of this
work, and within 0.10 eV for GGA-PBE. A recent pseudopotential plane wave calculation [32],
within the same (VASP) code, reported 6.90 eV, for a partially relaxed, 5L slab, in very good
agreement with our results (figure 5). Much lower absolute values of 4.81 and 5.54 eV were
reported for the relaxed and unrelaxed surface, respectively, from semiempirical tight binding
calculations [33]. Note, however, that the difference between these two values is close to that
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Figure 6. Relaxation of the interlayer spacing for the fully relaxed 11-layer slab, calculated with
respect to the average z-position of all Ti atoms in a given layer.

resulting from figure 5. According to FLAPW calculations [12] the relaxation increased the
work function by 0.13 eV only.

Most of the experimental estimates of the work function fall in the range 5.1–
5.5 eV [2, 34, 35], i.e. they are approximately 2 eV lower than our results. The reason for this
large difference is not quite clear. Following [14] we suspect that its main part originates from a
significant concentration of oxygen vacancies at the surface of the sample. As reported in [14],
changing the Ti4O8 stoichiometry of the perfect surface layer to the Ti4O7 results in the work
function lowering of 2 eV. This view is supported by some other experimental STM data which
report the work function of 6.83 eV (see a reference in [12]). Thus, our results for the unrelaxed
TiO2(110) slabs overestimate the experimental value by about 0.1 eV, and the relaxed ones by
0.4 eV. Speculating about the reasons for this remaining difference, which makes the results
for the unrelaxed (or one-side relaxed) TiO2(110) slabs closer to the experiment, one could
imagine that for the macroscopic single crystals used in experiment, the other outer surface, on
the opposite side of the slab, is not ‘felt’ by the surface investigated, and the sample could be
considered as a supported, or fixed one. Thus, in view of our results for the one-sided relaxed
slabs, the work function of such a supported sample will not alter upon relaxation.

3.3. Surface atomic structure

Figure 6 displays the relaxations, �i j = (di j − d)/d , of the distance di j , between the layers i
and j = i + 1 of the slab, calculated as a difference in the average z-position of all Ti atoms
in subsequent layers (d is the bulk interplanar spacing). Relaxations vary in an oscillatory way,
and the expansion of the second outer interlayer spacing is most significant. The relaxations
are not particularly large but they have a meaningful effect on oscillations of the surface energy
as a function of the slab thickness.

The displacements of individual atoms in a relaxed 7L slab, calculated with respect to the
centre of gravity of the Ti atoms of each trilayer, are presented in table 1. They are compared
to the two previous first principles calculations [6, 36], and the experimental data obtained with
surface x-ray diffraction (SXRD) [37], and quantitative low energy electron diffraction (LEED
I V ) techniques [38].

The main displacements occur perpendicular to the surface. Only the in-plane oxygen
atoms are subject to the lateral shifts (figure 3). For the odd layer slabs, the O(6) and fivefold
Ti(2) relax inwards. The greatest relaxation is exhibited by the in-plane atoms: the sixfold Ti(1),
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Table 1. Atomic displacements (in Å) along the [110] direction (and [110] where noted)
calculated in this work for the relaxed seven-layer slab, and in selected first principles (plane wave
pseudopotential (USPP) and full potential (FLAPW)) calculations, compared with the experimental
data. The displacements are calculated with respect to the average z-position of all Ti atoms in a
given layer. The wider line spacings separate atoms of different trilayers. The labels on atoms refer
to those shown in figure 3.

Theory Experiment

Atom This work USPP [6] FLAPW [36] SXRD [37] LEED-I V [38]

Ti(1) (sixfold) 0.21 0.23 0.08 0.12 ± 0.05 0.25 ± 0.03
Ti(2) (fivefold) −0.21 −0.11 −0.23 −0.16 ± 0.05 −0.19 ± 0.03
O(3) (bridging) 0.00 −0.02 −0.16 −0.27 ± 0.08 0.10 ± 0.05
O(4, 5) 0.14 0.18 0.09 0.05 ± 0.05 0.27 ± 0.08

O(4, 5) [110] ±0.05 ±0.05 ±0.06 ±0.16 ± 0.08 ±0.17 ± 0.15
O(6) −0.01 0.03 −0.09 0.05 ± 0.08 0.06 ± 0.10

Ti(7) 0.13 0.12 0.07 0.07 ± 0.04 0.14 ± 0.05
Ti(8) −0.13 −0.06 −0.13 −0.09 ± 0.04 −0.09 ± 0.07
O(9) −0.02 0.03 −0.05 0.00 ± 0.08 0.00 ± 0.08
O(10, 11) −0.01 0.00 −0.04 0.02 ± 0.06 0.06 ± 0.12

O(10, 11) [110] ±0.02 ±0.02 ±0.03 ±0.07 ± 0.06 ±0.07 ± 0.18
O(12) −0.03 0.03 −0.04 −0.09 ± 0.08 0.00 ± 0.17

Ti(13) 0.06 0.02
Ti(14) −0.06 −0.08
O(15) 0.02 0.00 −0.07 −0.12 ± 0.07 0.01 ± 0.13
O(16, 17) 0.01 −0.03

O(16, 17) [110] ±0.01 ±0.02
O(18) 0.00 −0.02

the fivefold Ti(2), and the O(4, 5). For titanium atoms our data are very close to the
LEED measurements [38]. For O(4, 5) they are in between the SXRD [37] and LEED
data [38]. A most controversial issue is the position of the bridging O(3). According to SXRD
experiment [37] the O(3) should exhibit the largest (inward) shift of all atoms. In contrast,
LEED measurements [38] predict an outward shift of medium size. Our calculations give zero
shift for this atom, which is consistent with what was predicted by previous pseudopotential
calculations [6]. The remaining atoms shift outwards with the largest displacement of sixfold
Ti(1). The shifts of the topmost layer atoms versus the slab thickness of fully relaxed slabs are
depicted in figure 7.

The displacements of atoms in deeper layers are still present, but their magnitude
diminishes rapidly. Most of the atoms of every second layer shift in the same direction. In
the slab centre, only the in-plane oxygens exhibit a small lateral shift (by up to ±0.01 Å).
With increasing number of optimized layers on two sides, the atomic displacements and the
interlayer spacings converge rapidly to those for the entirely relaxed system. In the one-sided
relaxation mode, starting from three relaxed layers, relaxation of an additional layer does not
significantly change the atomic positions.

In general, the calculated atomic structure reproduces the experimental pattern [38] very
well. It removes the discrepancy for the fivefold Ti(2), observed for previous pseudopotential
calculations, compared both to SXRD and to LEED. A nearly zero, substantially weaker than
experimentally measured [37] relaxation of the bridging oxygen is typical for all first principles
calculations, and still remains under debate. It has been suggested that the discrepancy should
be attributed to soft surface phonons [36]. This, however, has been questioned by the results
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Figure 7. Displacements of the surface layer atoms along the [110] direction (calculated with
respect to the average z-position of Ti atoms in a given layer) versus the thickness of relaxed slabs.
The labelling of atoms refers to that adopted in figure 3.

of the molecular dynamics study [39], where it was shown that phonon contribution is very
small, and in turn, the discrepancy was ascribed to asymmetric lateral relaxation of the bridging
O(3). The latter effect was excluded from the experimental analysis [37] of the SXRD pattern.
The most recent LEED I V experimental data [38] seem to clarify this point in favour of first
principles calculations, providing a smaller and oppositely directed shift of the bridging O(3).
It has been also shown that the soft surface phonons have no significant bearing on the LEED
I V structure determination. These new data are found to be more consistent with some ab
initio calculations [40]. On the other hand, though the new data are reducing the discrepancy
for the positions of bridging O(3), they seem to produce another discrepancy (table 1), for the
in-plane O(4, 5).

4. Summary and conclusion

The geometric and electronic structure of stoichiometric rutile (110) have been re-examined.
While we confirm that relaxation of atomic layers is a prerequisite for obtaining realistic surface
energies we find that crucial for this is the relaxation of atoms in the two outermost surface
layers. We find that the calculated surface energies and work functions are greatly affected
by the surface relaxation mode and the exchange–correlation functional applied. This is of
importance in accurate modelling of rutile TiO2 single crystal surfaces. We demonstrate that
good estimates of asymptotic surface energies can be obtained from simpler calculations for
the partially relaxed slabs. Our results show that in order to obtain reliable, well converged
results for the energetic and structural properties of the clean rutile TiO2(110), fully relaxed
slabs consisting of at least seven triple atomic layers are required.
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